Urban Dynamics and Simulation Models

Urban Dynamics and Simulation Models | ERC GeoDiverCityNew book, published by Springer International.


Pumain D., Reuillon R. (eds.), 2017, Urban Dynamics and Simulation Models, Springer, 123p.
DOI 10.1007/978-3-319-46497-8

Authors. Chapron P., Chérel G., Cottineau C., Cura R., Leclaire M., Pumain D., Rey-Coyrehourcq S., Reuillon R., Schmitt C., Swerts E.

Abstract. This monograph presents urban simulation methods that help in better understanding urban dynamics. Over historical times, cities have progressively absorbed a larger part of human population and will concentrate three quarters of humankind before the end of the century. This “urban transition” that has totally transformed the way we inhabit the planet is globally understood in its socio-economic rationales but is less frequently questioned as a spatio-temporal process. However, the cities, because they are intrinsically linked in a game of competition for resources and development, self organize in “systems of cities” where their future becomes more and more interdependent. The high frequency and intensity of interactions between cities explain that urban systems all over the world exhibit large similarities in their hierarchical and functional structure and rather regular dynamics. They are complex systems whose emergence, structure and further evolution are widely governed by the multiple kinds of interaction that link the various actors and institutions investing in cities their efforts, capital, knowledge and intelligence. Simulation models that reconstruct this dynamics may help in better understanding it and exploring future plausible evolutions of urban systems. This would provide better insight about how societies can manage the ecological transition at local, regional and global scales. The author has developed a series of instruments that greatly improve the techniques of validation for such models of social sciences that can be submitted to many applications in a variety of geographical situations. Examples are given for several BRICS countries, Europe and United States. The target audience primarily comprises research experts in the field of urban dynamics, but the book may also be beneficial for graduate students.

Key-words. Simulation, Simulation models, Simpop, Systems of Cities, Complexity, Urban systems, Urban systems dynamics, BRICS.

Link. http://www.springer.com/us/book/9783319464954

Multi-agent modeling of urban growth distribution in systems of cities

A strong regularity in urban systems has long been identified : the hierarchical distribution of city sizes. Moreover, a closer observation of the evolution of this distribution shows that in the majority of city systems, there is a trend towards a more and more unequal distribution of city sizes. Why does the majority of urban systems show those strong regularities? What are the common growth processes involved? Several dynamic growth models have been proposed but no consensus has yet been reached because of the under-determination of models by those empirical laws. In this presentation we describe a new method of agent-based parsimonious modeling that we think can contribute to the identification of the common urban growth processes. This modeling method is based  on  intensive model exploration for quantitative evaluation of implemented mechanisms. The exploration tools were first developed for the evaluation of SimpopLocal, a model of the organization of urban systems when cities first emerged. The use of those exploration tools was then generalized into a modeling method that was applied for the first time with the construction of the MARIUS family of models which aims at reproducing the evolution of Soviet urbanisation between 1959 and 1989. Those two examples show how this new modeling method can help the construction of urban theories by helping the evaluation of assumptions made on urban processes.

[gview file= »http://geodivercity.parisgeo.cnrs.fr/blog/wp-content/uploads/2015/01/prez-QuantUrb.pdf »]

Communication at the seminar Quanturb, ISC-PIF (Paris), November 19th.

Clara Schmitt and Paul Chapron

GeoDiverCity at AAG Annual Meeting 2014 in Tampa, Florida

Various contributions of GeoDiverCity team are scheduled for the Annual Meeting of the Association of American Geographers in Tampa, Florida :

Tuesday, 4/8/2014

> Session : 1654 European Research Council – Top European grants for brilliant minds from across the world, from 4:40 PM – 6:20 PM in Grand Salon C, Marriott, Second Floor. Organizer : Katja Meinke.

17:15-17:30    Denise Pumain, « ERC from an Advanced Grantee’s perspective. »

Wednesday, 4/9/2014

> Session : 2268 Urban systems and scaling laws: Functional diversity and urban economic trajectories, from 10:00 AM – 11:40 AM in Meeting Room 1, Marriott, Second Floor. Organizer : Céline Vacchiani-Marcuzzo.

10:00-10:20    Elfie Swerts, Céline Vacchiani-Marcuzzo, Fabien Paulus, « Scaling laws as a tool for characterising the functional evolution in urban systems »

10:20-10:40    Olivier Finance, « Transnational firms in the French system of cities and scaling laws »

> Session : 2239 Geosimulation Models 1: Methodological Advances, from 10:00 AM – 11:40 AM in Room 39, TCC, Fourth Floor. Organizers : Paul Torrens, Suzana Dragicevic, Andrew Crooks.

11:20-11:40    Mathieu Leclaire, Romain Reuillon, « Simpuzzle/Janet tools or how to build a step by step modular ABM ? »

> Session : 2539 Geosimulation Models 3 : Applications – Macro, from 2:40 PM – 4:20 PM in Room 39, TCC, Fourth Floor. Organizers : Paul Torrens, Suzana Dragicevic, Andrew Crooks.

14:00-14:20    Clémentine Cottineau, Paul Chapron, « Evaluation & Calibration for the comparison of ABMs of cities’ trajectories »

16:00-16:20  Denise Pumain, Clara Schmitt, Sébastien Rey-Coyrehourcq, Romain Reuillon, « Building and exploring an agent-based model with OpenMOLE »

Complex Systems and Geography

GeoDiverCity Team was active at presenting their work to a diverse and large audience at the inauguration of the Complex Systems Institute in Paris.

Here are some documents we presented :

> A selection of visual results in geographical modeling

[gview file= »http://geodivercity.parisgeo.cnrs.fr/blog/wp-content/uploads/2014/03/GeoModelingok1.pdf »]

Paul Chapron, Clémentine Cottineau, Robin Cura, César Ducruet, Julie Fen-Chong, Sébastien Haule, Marion Le Texier, Nora Marei and Clara Schmitt

Picture Refs : 1. C. Cottineau, 2. D. Holten & J. W. Jarke, 3. R. Cura, 4.5. C. Ducruet, 6. M. Le Texier, 7. C. Cottineau, 8. P. Chapron, 9.10. C. Schmitt

> Netlogo models of systems of cities

  • SimpopNet

Clara Schmitt

 

  • MARIUS : Modeling of Agglomerations of Imperial Russia and the Soviet Union

Clémentine Cottineau and Paul Chapron

 

> A poster about a method to conceive, build and evaluate models at the intersection of generic systems of cities and the specific case of post-Soviet cities

Clémentine Cottineau, Paul Chapron, Denise Pumain and Romain Reuillon

 

> Accessing the European Grid computing power

Mathieu Leclaire and Romain Reuillon

 

Cities and Transport relations in South Africa over the long-term

The aim of my study[ref]PhD project of Solène Baffi, under the supervision of Anne Bretagnolle, Olivier Ninot, Denise Pumain and Celine Vacchiani-Marcuzzo (founded by ERC GeoDiverCity) [/ref] is to understand the role of South African cities in the transport flux and networks, and how cities and transport are interacting, from colonization in the 17thuntil nowadays. If cities and transport interactions are a particularly interesting approach to understand the metropolisation process and the urban system building, the South African context makes it even more relevant. Indeed, South Africa is a young country and national transport networks such as the railway network, have been built while the urban system was formed.

Co-evolution of urban system and railway network in South Africa

The arrival of European settlers in 1652 to the Cape of Good Hope marked the beginning of South African modern history, in particular by initiating the urbanization process. Until then, no city, strictly speaking, existed yet (Coquery-Vidrovitch). The implementation of a settlement engaged the constitution of an urban system well connected with Europe, but not very well between cities (Vacchiani-Marcuzzo).

The discovery of the goldfields and diamond mines in the 1860’s overturned that system. In the heart of the mining region, Johannesburg faced a fast growth to become the biggest metropolis in the country. The emergence of this new centre deeply modified the urban structure by switching the country’s centre of gravity from the coast to the Witwatersrand. Indeed, the British Empire decided to experiment inner-city railways in Cape Town and Durban in the 1860’s. But given the mining revolution, the decision to extend it to the entire country was quickly made in order to dispatch the mining extractions from the Witwatersrand plateau to the shoreline before having them exported to Europe. Hence, in a bit less than 100 years, a 20 000 km railway network has been built.

The implementation of such a network whereas the urban system was formed enables us to talk about a co-evolution of urban system and transport network in South Africa. Citie’s growth has largely been influenced by their position on the railway network. Large cities benefitted from a better accessibility, which reinforced their centrality while small towns had to deal with the simplification of urban hierarchy. As in many other countries, we can notice the strong interaction between cities and transport and its effect on the process of cities selection, particularly reinforced  by the railway network in the South African example.

I started my research by focusing on the railway network given it seemed easier to start with an historical approach at the larger scale. To observe and study this co-evolution we decided to cross two databases created in Geographie-Cités. The first one, built in the research program Harmonie-Cités, gathers data about the evolution of South African cities (of more than 5 000 inhabitants) over almost a century. To create this database, South African censuses have been used. The second one, made up in the frame of Geodivercity research program, contains data about the railway network’s development in South Africa and has been built thanks to the SARH archives. By crossing these databases, we created maps over 60 years which show the concomitant evolution of the urban system and railway network.

Now, I intend to deepen my analysis and enlarge my focus to the implementation of transport in metropolitan areas on one hand, and the position of South Africa in global networks on the other.

Solène Baffi

How to explore the future of cities? An evolutionary theory including urban dynamics and territorial history

Within the framework of the GeoDiverCity programme we are attempting at modelling the future evolution of cities. As cities are very complex systems, any exact prediction is impossible. However, the exploration of plausible futures is possible, with an increasing approximation according to the length of time duration.

The theory behind our modelling is that cities have to be considered not as isolated entities but as interdependent systems being embedded in complex situations summarised by three major aspects:

–       the system of cities with which they have most of their interactions

–       the territory to which they belong

–       the historical period under consideration

Cities are depending on multiple interactions that occur with other cities in multiple networks for all kind of urban activities from local to global scales – that is why we always consider them as part of systems of cities; cities also are rooted in administrative and political territories that generate specific rules and constraints for their development, at local, regional, national and international levels; during the about ten thousands years period of their existence, the type of relations that cities have had with their environment has changed and despite its rather massive common features the urbanisation process has taken a wide range of variations in different parts of the world.

Analysing the evolution of systems of cities from large urban data bases, we suggest recognising that they share many common features but also exhibit a fundamental geo-diversity that is the expression of path dependence in their development. We can model the common dynamics of systems of cities from the interactions between cities, but for understanding and predicting their differentiated evolution we have to take into account their history.  This does not mean building a narrative of successive events but a careful selection of a few specific historical regimes that contextualise the development of systems of cities all over the world (including for instance quality of natural environment, steps of the demographic transition, or relative situation in innovation networks), as well as a restricted set of events that may have more specifically occurred during the history when trying to predict the evolution of any individual city.

Denise Pumain

From SimpopLocal to SimpopClim: Three stages of urban growth dynamics under resource accessibility constraints

  The aim of this series of models [ref] PhD project of Clara Schmitt, under the supervision of Denise Pumain (founded by ADEME, The French Agency for Environment and Energy) [/ref] is to study growth regimes of systems of cities, which are defined by the nature of the interaction between the cities. Three different stages of urbanisation are considered as resource accessibility, which plays a major role in growth dynamics, takes different forms. For each stage, a set of stylized facts characterizing the state of the system and urban growth dynamics is proposed and defines the structure of an ABM model.

The SimpopLocal model tries to characterise a stylised dynamics of urban emergence.  This first urban regime is defined by the role of local environmental constraints on growth. Central to this model is the notion of landscape carrying capacity. Settlement sizes and their growth are controlled by the amount of resources locally available.  But innovations and their diffusion in the system thanks to interactions between settlements help to overcome those limitations, eventually producing the proto-structure of urban systems.

The SimpopNet model characterise the progressive networking of urban economies. Innovations in communication and transport networks allow the trade and long distance diffusion of goods and techniques which enables cities to overcome, by importing what was lacking, the local constraints and climatic hazards that limited their growth. In this regime, the resource accessibility of each city is defined by its situation in the network. The SimpopNet model simulates the co-evolution of urban systems and transportation networks.

The SimpopClim model will represent a dynamic regime that takes into account the impact of global environmental constraints on urban dynamics.

This PhD is made possible thanks to interdisciplinary work with computer researchers participating in the GeoDiverCity programme, hired after previous collaboration with ISC-PIF (Romain Reuillon and Mathieu Leclaire, http://www.iscpif.fr/) and a PhD in geomatics conducted by Sébastien Rey Coyrehourcq. The SimpopLocal and SimpopNet models are used as case studies for the development of grid exploration procedures and protocols with OpenMole (http://www.openmole.org/). Those explorations and validating tools are designed to meet the validation and reproducibility requirements and to be generic and adapted to the exploration of spatial simulation models.

Clara Schmitt