Urban Dynamics and Simulation Models

Urban Dynamics and Simulation Models | ERC GeoDiverCityNew book, published by Springer International.


Pumain D., Reuillon R. (eds.), 2017, Urban Dynamics and Simulation Models, Springer, 123p.
DOI 10.1007/978-3-319-46497-8

Authors. Chapron P., Chérel G., Cottineau C., Cura R., Leclaire M., Pumain D., Rey-Coyrehourcq S., Reuillon R., Schmitt C., Swerts E.

Abstract. This monograph presents urban simulation methods that help in better understanding urban dynamics. Over historical times, cities have progressively absorbed a larger part of human population and will concentrate three quarters of humankind before the end of the century. This “urban transition” that has totally transformed the way we inhabit the planet is globally understood in its socio-economic rationales but is less frequently questioned as a spatio-temporal process. However, the cities, because they are intrinsically linked in a game of competition for resources and development, self organize in “systems of cities” where their future becomes more and more interdependent. The high frequency and intensity of interactions between cities explain that urban systems all over the world exhibit large similarities in their hierarchical and functional structure and rather regular dynamics. They are complex systems whose emergence, structure and further evolution are widely governed by the multiple kinds of interaction that link the various actors and institutions investing in cities their efforts, capital, knowledge and intelligence. Simulation models that reconstruct this dynamics may help in better understanding it and exploring future plausible evolutions of urban systems. This would provide better insight about how societies can manage the ecological transition at local, regional and global scales. The author has developed a series of instruments that greatly improve the techniques of validation for such models of social sciences that can be submitted to many applications in a variety of geographical situations. Examples are given for several BRICS countries, Europe and United States. The target audience primarily comprises research experts in the field of urban dynamics, but the book may also be beneficial for graduate students.

Key-words. Simulation, Simulation models, Simpop, Systems of Cities, Complexity, Urban systems, Urban systems dynamics, BRICS.

Link. http://www.springer.com/us/book/9783319464954

A New Method to Evaluate Simulation Models: The Calibration Profile (CP) Algorithm

New publication, in JASSS : Journal of Artificial Societies and Social Simulation


Reuillon R., Schmitt C., De Aldama R., Mouret J.-B., 2015, « A New Method to Evaluate Simulation Models: The Calibration Profile (CP) Algorithm », JASSS : Journal of Artificial Societies and Social Simulation, Vol. 18, Issue 1, http://jasss.soc.surrey.ac.uk/18/1/12.html

Abstract. Models of social systems generally contain free parameters that cannot be evaluated directly from data. A calibration phase is therefore necessary to assess the capacity of the model to produce the expected dynamics. However, despite the high computational cost of this calibration it doesn’t produce a global picture of the relationship between the parameter space and the behaviour space of the model. The Calibration Profile (CP) algorithm is an innovative method extending the concept of automated calibration processes. It computes a profile that depicts the effect of each single parameter on the model behaviour, independently from the others. A 2-dimensional graph is thus produced exposing the impact of the parameter under study on the capacity of the model to produce expected dynamics. The first part of this paper is devoted to the formal description of the CP algorithm. In the second part,we apply it to an agent based geographical model (SimpopLocal). The analysis of the results brings to light novel insights on the model.

Key-words. Calibration Profile, Model Evaluation

Half a billion simulations: Evolutionary algorithms and distributed computing for calibrating the SimpopLocal geographical model

New publication, in Environment and Planning B.


Schmitt C, Rey-Coyrehourcq S, Reuillon R, Pumain D, 2015, “Half a billion simulations: evolutionary algorithms and distributed computing for calibrating the SimpopLocal geographical model” Environment and Planning B: Planning and Design, 42(2), 300-315. http://www.envplan.com/abstract.cgi?id=b130064p

Abstract. Multiagent geographical models integrate very large numbers of spatial interactions. In order to validate these models a large amount of computing is necessary for their simulation and calibration. Here a new data-processing chain, including an automated calibration procedure, is tested on a computational grid using evolutionary algorithms. This is applied for the first time to a geographical model designed to simulate the evolution of an early urban settlement system. The method enables us to reduce the computing time and provides robust results. Using this method, we identify several parameter settings that minimize three objective functions that quantify how closely the model results match a reference pattern. As the values of each parameter in different settings are very close, this estimation considerably reduces the initial possible domain of variation of the parameters. Thus the model is a useful tool for further multiple applications in empirical historical situations.

Keywords: simulation model, multiagent system, calibration, evolutionary algorithm, geographical modelling, high-performance computing, model validation